An investigation into how an integrated user interface and virtual reality affects operator performance when completing submarine control room tasks

Open Access
Article
Conference Proceedings
Authors: Roman BoltonSophie HallamAlex SmithJade MelendezCraig AllisonKatie Plant

Abstract: Submarines use a plethora of sensors crucial for above-water surveillance. For example, the optronics mast utilises sensors that collect optical data on the surrounding environment. Whereas the Radar Electronic Support Measures (RESM) mast provides electromagnetic surveillance that focuses on avoiding counter-detection. Paradoxically though, every time the mast is up it increases the risk of counter-detection. To reduce exposure time, submarine masts are integrating multiple sensors; like optronics and RESM, to collect data simultaneously. Traditionally, different operators complete optronics and RESM tasks. However, an integrated optronics and RESM mast, would likely require an integrated operator role. Therefore, optimising the Human-Machine Interface would enable optimal operator performance. One suggestion is to present both optronics and RESM data on a single user interface and explore different ways of presenting this information, using more emerging technologies. Therefore, the aim of this study is to investigate how an interface, which supports the presentation of both optronics and RESM data, affects operator performance compared to an interface that presents optronics data only. The study will also explore the effects of presenting such information using current and novel display methods, specifically computer monitors and virtual reality (VR). To test this, four experimental conditions were devised: (1) no additional data using a conventional display, (2) additional RESM data using a conventional display, (3) no additional data using a VR display, and (4) additional RESM data using a VR display. To assess operator performance, participants will complete simulations in each condition, and data will be collected on task accuracy, task completion time, operator workload, situation awareness, and system usability. A detailed account of the research findings will be presented.

Keywords: User interface, virtual reality, submarine, operator performance

DOI: 10.54941/ahfe1004264

Cite this paper:

Downloads
117
Visits
362
Download