A comprehensive digital twin for assessing feasibility and ergonomics of high-tension cable assembly operations

Open Access
Article
Conference Proceedings
Authors: Manuela Vargas GonzalezMaria Pia CavatortaValerio CibrarioLidia GhibaudoLudovico Rossi

Abstract: The focus of this study is on a comprehensive digital twin illustrating the assembly of a high-tension cable in an electric vehicle. This involves the integration of two software programs, IPS Cable Simulation and IPS IMMA (Intelligently Moving Manikin in Assembly), to simulate the cable assembly and analyze ergonomic factors. The study uses the vehicle geometry and task sequence of Stellantis on a hypothetical use case of an extreme assembly line with the vehicle raised and the operator performing the activity underbody. The simulation of the cable assembly analyses extension-compression and torsion behaviors, ensuring compliance with acceptable limits. Anthropometric variations among operators are considered using IPS IMMA's module to create a family of manikins representing the global Stellantis workforce. Ergonomic analysis with the EAWS tool identifies risk factors for operators of different anthropometries. Additionally, a comparison is made on task time between the MTM-UAS methodology and IPS simulation's biomechanically modelled time. Results indicate a successful integration of IPS Cable Simulation and IPS IMMA, creating a digital twin that accurately simulates the operator's task with the high-voltage cable. The study emphasizes the importance of biomechanical models in understanding issues related to reachability, incongruous postures, and their impact on task time, contrasting with predetermined time approaches. In the current landscape of electrified vehicles, where there is a noticeable increase in the dimension and number of the cables, and of autonomous vehicles, where packaging challenges arise from redundancy requirements and the growing reliance on virtual verification, comprehensive and realistic dynamic simulations will become increasingly vital.

Keywords: Dynamic simulation, Digital Human Modelling, Cable assembly, Ergonomics, Time analysis

DOI: 10.54941/ahfe1004631

Cite this paper:

Downloads
77
Visits
194
Download