Human-agent teaming between soldiers and unmanned ground systems in a resupply scenario

Open Access
Article
Conference Proceedings
Authors: Geert De CubberEmile Le FlécherAlexandre La Grappe - DominicusDaniela Doroftei

Abstract: Thanks to advances in embedded computing and robotics, intelligent Unmanned Ground Systems (UGS) are used more and more in our daily lives. Also in the military domain, the use of UGS is highly investigated for applications like force protection of military installations, surveillance, target acquisition, reconnaissance, handling of chemical, biological, radiological, nuclear (CBRN) threats, explosive ordnance disposal, etc. A pivotal research aspect for the integration of these military UGS in the standard operating procedures is the question of how to achieve a seamless collaboration between human and robotic agents in such high-stress and non-structured environments. Indeed, in these kind of operations, it is critical that the human-agent mutual understanding is flawless; hence, the focus on human factors and ergonomic design of the control interfaces.The objective of this paper is to focus on one key military application of UGS, more specifically logistics, and elaborate how efficient human-machine teaming can be achieved in such a scenario. While getting much less attention than other application areas, the domain of logistics is in fact one of the most important for any military operation, as it is an application area that is very well suited for robotic systems. Indeed, military troops are very often burdened by having to haul heavy gear across large distances, which is a problem UGS can solve.The significance of this paper is that it is based on more than two years of field research work on human + multi-agent UGS collaboration in realistic military operating conditions, performed within the scope of the European project iMUGS. In the framework of this project, not less than six large-scale field trial campaigns were organized across Europe. In each field trial campaign, soldiers and UGS had to work together to achieve a set of high-level mission goals that were distributed among them via a planning & scheduling mechanism. This paper will focus on the outcomes of the Belgian field trial, which concentrated on a resupply logistics mission.Within this paper, a description of the iMUGS test setup and operational scenarios is provided. The ergonomic design of the tactical planning system is elaborated, together with the high-level swarming and task scheduling methods that divide the work between robotic and human agents in the fieldThe resupply mission, as described in this paper, was executed in summer 2022 in Belgium by a mixed team of soldiers and UGS for an audience of around 200 people from defence actors from European member states. The results of this field trial were evaluated as highly positive, as all high-level requirements were obtained by the robotic fleet.

Keywords: Unmanned Ground Systems, Robotics, Human Agent Teaming

DOI: 10.54941/ahfe1003746

Cite this paper:

Downloads
143
Visits
265
Download